MotionLinx-Ai User's Guide

Version 1.2 Januar 2017

Publikation ML-100

Die Firmware und Funktionalität der MotionLinx-Module sind durch US- und internationale Patente geschützt. Die vollständigen Patentinformationen finden Sie unter www.pulseroller.com/patents.

<u>GLOSSAR</u>

Ai ConveyLinx	Die patentierte Technologie, die zur Steuerung eines Gleichstrommotors mit externer Kommutierung über einen 4-poligen M8-Standardstecker verwendet wird. Eine Förderbandsteuerung basierend auf modular verteilten, über Ethernet verbundenen Geräten.
MotionLinx-Ai	Teil der ConveyLinx-Produktfamilie, in dem zur Kommunikation das EtherCAT- Industrieprotokoll läuft. Dieses Modul verwendet die Ai-Technologie zur Steuerung von bis zu zwei Senergy-Ai-Motorrollen. Profnet IO, EthernetIP und ModBus, TCP werden von <i>MotionLinx-Ai</i> nicht unterstützt.
EtherCAT	Ein von Beckhoff Automation entwickeltes Industrieprotokoll. Ein spezieller EtherCAT- Switch ist erforderlich.
Hall-Effekt-Geber	des Motorrotors an die Motorsteuerung übermittelt.
M8	Eine bestimmte Steckerart mit vier Polen, die an den MotionLinx-Ai -Modulen sowohl als Sensor- als auch als Motorrollen-Stecker verwendet wird.
LED	Light Emitting Diode (Leuchtdiode) – Im Kontext dieser Anleitung dienen LEDs am ERSC zur visuellen Statusanzeige des Moduls.
MDR	Motorized Drive Roller bzw. Motor Driven Roller (motorgetriebene Rolle, Motorrolle) – Bürstenloser Gleichstrommotor und Getriebe integriert in eine einzelne Förderrolle.
NPN/PNP	Begriff aus der Elektronik, der die Art der Transistorschaltung angibt, die für die logische Ein- oder Ausgabe von Steuerungen verwendet wird. NPN-Geräte erzeugen eine Masseverbindung und PNP-Geräte eine Ausgangsspannung (Logikpegel) wenn sie aktiviert sind.
PGD	Einheit aus Senergy-Ai-Motor und Getriebe mit Standard-Montageseite und universeller Achse. Im Vergleich zu Motorrollen ist das PGD-Gerät für mehr Universalanwendungen geeignet.
SPS	Speicherprogrammierbare Steuerung – Eine Vielzahl von industriellen rechnergestützten Geräten, die automatische Anlagen steuern. (Engl.: PLC - Programmable Logic Controller)
IP54	Die IP-Kodierung (International Protection Marking) spezifiziert den Resistenzgrad desGerätsgegenüberIntrusionen,StaubEin IP54-zertifiziertesGerätmussvollständiggeschütztseinvorSpritzwasser,Staubpartikeln und Berührung.
Senergy-Ai	Motorsteuerungsplattform der Marke PulseRoller, die im Motor die elektronische Intelligenz bereitstellt, die von ConveyLinx-Ai - und MotionLinx-Ai -Steuerungsmodulen gelesen werden kann. Der Motor wird mit der Steuerung über einen 4-poligen M8- Stecker verbunden.
TwinCAT	Von Beckhoff erstellte und vertriebene PC-basierte integrierte Entwicklungs- und Ausführungs-Programmierumgebung. Sie ermöglicht dem Benutzer die Erstellung von Hardwarekonfigurationen und SPS-Aufgaben. Der Entwicklungsteil der Umgebung ist PC- basiert und läuft in fast jedem System. Der Ausführungsteil (SPS-Aufgaben) läuft dagegen nur auf 32 bit Intel-CPUs oder 64 bit Intel-CPUs mit aktivierter VT-X-Funktion. Für unsere Beispiele verwenden wir TwinCAT3.

MotionLinx-Ai Benutzerhandbuch

Beckhoff Automation GmbH & Co. KG Entwickler des EtherCAT-Protokolls und der TwinCAT-Software

5

VERWENDETE SYMBOLE

Dieses Symbol zeigt an, dass besondere Vorsicht geboten ist, sowohl um den ordnungsgemäßen Gebrauch zu gewährleisten, als auch zur Vermeidung von Gefahren, unsachgemäßer Anwendung oder möglicher unerwarteter Folgen.

Dieses Symbol weist auf wichtige Vorschriften, Anmerkungen oder andere nützliche Informationen zum richtigen Gebrauch der hier beschriebenen Produkte und Software hin.

WICHTIGE BENUTZERINFORMATIONEN

MotionLinx-Ai-Module enthalten Teile und Komponenten, die gegenüber elektrostatischer Entladung (ESD) empfindlich sind. Vorkehrungen zur Statikkontrolle sind notwendig bei der Installation, beim Testen, Warten und Austauschen dieser Module. Die Missachtung der ESD-Schutzmaßnahmen kann die Beschädigung von Komponenten zur Folge haben. Sollten Sie mit statischen Kontrollverfahren nicht vertraut sein, ziehen Sie bitte ein entsprechendes Handbuch zum ESD-Schutz zurate. Die grundsätzlichen Richtlinien sind:

- Berühren Sie ein geerdetes Objekt, um elektrostatisches Potential zu entladen
- Tragen Sie ein zugelassenes Erdungsband um das Handgelenk
- Vermeiden Sie die Berührung der Anschlüsse auf den Platinen
- Vermeiden Sie die Berührung von Schaltkreiskomponenten im Inneren der Geräte
- Sofern verfügbar, verwenden Sie einen Arbeitsplatz mit elektrostatischer Ableitung
- Wenn die Geräte nicht verwendet werden, bewahren Sie sie bitte in einer geeigneten antistatischen Schutzverpackung auf

Aufgrund der vielfältigen Anwendungsmöglichkeiten der in dieser Publikation beschriebenen Produkte muss der Benutzer dieser Steuerungseinrichtung selbst sicherstellen, dass die notwendigen Schritte zur Einhaltung aller Leistungsanforderungen und Sicherheitsvorschriften eingehalten werden, einschließlich aller geltenden Gesetze, Verordnungen und Regeln.

Die Illustrationen, Tabellen, Musterprogramme und Layout-Beispiele in diesem Handbuch dienen ausschließlich der Veranschaulichung. Da bei jeder individuellen Installation viele Variable und unterschiedliche Anforderungen auftreten, übernimmt Insight Automation Inc. keine Verantwortung oder Haftung für die tatsächliche Anwendung basierend auf den in dieser Publikation gezeigten Beispielen.

Die vollständige oder teilweise Vervielfältigung des Inhalts dieses Handbuchs ohne schriftliche Genehmigung von Insight Automation Inc. ist nicht gestattet.

MotionLinx-Ai Benutzerhandbuch

ODMOTIONLINX

ÄNDERUNGSÜBERSICHT

In der folgenden Tabelle sind alle Änderungen und Aktualisierungen seit der letzten Überarbeitung zusammengefasst.

Version	Datum	Änderung/Aktualisierung
1.0	August 2016	Erstveröffentlichung
1.1	November 2016	Aktualisierungen für Firmware 1.2
1.2	Januar 2017	Anhang C zur Dimensionierung der Stromversorgung

Weltweite Kontaktdaten

8

MotionLinx-Ai Benutzerhandbuch

ÜBERSICHT DER HARDWARE-ÄNDERUNGEN

In der folgenden Tabelle sind alle Änderungen und Aktualisierungen seit der letzten Überarbeitung zusammengefasst..

Hardware-Versionen				
Version	Datum	Änderung/Aktualisierung		
1.0	August 2016	Erstveröffentlichung		

MOTIONLINX

INHALTSVERZEICHNIS

Glossar	3
Verwendete Symbole	5
Wichtige Benutzerinformationen	5
Änderungsübersicht	7
Weltweite Kontaktdaten	7
Übersicht der Hardware-Änderungen	8
Inhaltsverzeichnis	9
Einleitung	13
Wer sollte dieses Handbuch verwenden?	13
Ziel dieses Handbuchs	13
Nicht in diesem Handbuch enthalten	13
Einführung zu MotionLinx®	15
Typische Fördersystemkomponenten	15
MotionLinx-Ai-Moduleigenschaften	16
Überblick über die MotionLinx-Ai-Modulhardware	17
Hardwareverbindungen	18
Motoranschlüsse Links und Rechts	18
Sensoranschlüsse Links und Rechts	19
Ethernet IN (links) und Ethernet OUT (rechts) Ports	20
Stromanschlüsse	23
IP54-Installation	23
Logik- und Motorrollen-Stromversorgung	23
Erdung der Stromversorgung	25
Definition der Motordrehrichtung	27
Statusanzeigen	29
Kommunikation	29
Netzwerk und Modulfunktion	29
Motoren	30
Sensoren	30
Strom 30	
MotionLinx-Ai in TwinCAT integrieren	31

10

MotionLinx-Ai Benutzerhandbuch

MOTIONLINX

Einleitung	31
ESI-Dateien	
MotionLinx-Geräte zu einer Projektlösung hinzufügen	
On-Line-Methode	32
MotionLinx-Ai-Datenobjekte	
Transmit-PDOs	34
Transmit PDO0 - Object 0x1A00	
Transmit PDO1 - Object 0x1A01	35
Anmerkung ①	35
Receive PDOs	
Receive PDO0 - Object 0x1600	
Receive PDO1 - Object 0x1601	
Receive PDO2 - Object 0x1602	
Verwendung von PDO-Daten	
Service Data Objects (SDOs)	
Konfiguration SDO - Index 0x4000	
Anmerkung ②	
Anmerkung ③	
Anmerkung ④	40
Motordaten Links & Motordaten Rechts SDO - Index 0x4100 / 0x4101	40
Motor-/Modultemperatur SDO - Index 0x3007 und 0x3008	41
Maximale Motorgeschwindigkeit SDO - Index 0x3011 und 0x3012	42
MotionLinx-Ai "File over EtherCAT"	43
MotionLinx-Ai Firmware-Aktualisierung	43
MotionLinx-Ai ESI-Datei Upgrade	44
Anhang A - Modulspezifikationen	45
Abmessungen	45
Einbaumaße	46
Umgebung und Elektrik	46
Sensor-Port	47

ODMOTIONLINX

Inhaltsverzeichnis 11

Motor-Ports	48
Ethernet-Spezifikation	48
Unterstützte Industrial Ethernet-Protokolle	48
Anhang B - IOX-2Breakout Modul	49
Anhang C - Belastung der Stromversorgung	51
Notizen:	53

EINLEITUNG

WER SOLLTE DIESES HANDBUCH VERWENDEN?

Dieses Handbuch richtet sich an Benutzer, die grundlegende Produktinformationen und einfache Anwendungsverfahren benötigen, um *MotionLinx-Ai*-Module mit Senergy-Ai-Motoren zu verwenden.

Sie sollten über ein Grundverständnis von elektrischen Schaltungen verfügen und mit Relais-Logik, BLDC-Motoren etc. vertraut sein. Wenn nicht, absolvieren Sie bitte die entsprechenden Schulungen, bevor Sie dieses Produkt verwenden.

ZIEL DIESES HANDBUCHS

Ziel dieses Handbuchs ist es:

- die Identifizierung von Komponenten und Ports, über die ein Modul verfügt
- die Bereitstellung von Anleitungen für die ordnungsgemäße Installation und Verdrahtung
- das Aufzeigen von Beispielen grundlegender Modulverbindungen
- die Einführung des TwinCat-Softwaretools und die Bereitstellung von Anleitungen zur Konfiguration und Änderung von Parametern.

NICHT IN DIESEM HANDBUCH ENTHALTEN

Da Systemanwendungen variieren, setzt dieses Handbuch voraus, dass Benutzer und Anwendungstechniker die Kapazität der Leistungsverteilung entsprechend an die zu erwartende Motorauslastung sowie die zu erwartende Betriebsdauer angepasst haben. Empfehlungen zur Dimensionierung Ihrer Stromversorgung finden Sie in der Herstellerdokumentation der Förderanlage und/oder der Motorrollen.

EINFÜHRUNG ZU MOTIONLINX®

Jedes *MotionLinx-Ai*-Steuermodul bietet Anschlussmöglichkeiten für bis zu 2 Senergy-Ai-Motoren (Motorrollen oder PGD) und bis zu 4 Digitaleingänge. Jedes Modul ist mit einem In/Out EtherCAT-Slave Controller ausgestattet, damit mehrere *MotionLinx-Ai*-Module in Reihe angeschlossen werden können, um ein EtherCAT-Netzwerk zu bilden. Ein Netzwerk aus mehreren *MotionLinx-Ai*-Modulen kann beispielsweise gut als integrierte Motorrollen-Förderbandsteuerungslösung verwendet werden. In diesem Beispiel kann jedes *MotionLinx-Ai*-Modul bis zu 2 Senergy Ai-Motorrollen und 2 Fotosensoren bedienen, um bis zu 2 Förderbandzonen zu steuern.

ABBILDUNG1 – ETHERCAT-NETZWERK AUS MOTIONLINX-AI-MODULEN

Wie in jedem EtherCAT-basierten System benötigen die Slave-Geräte eine Mastersteuerung, die ihren Betrieb leitet. *MotionLinx-Ai*-Module allein verfügen über keine automatische Funktion oder Kontrolle über Motor oder Eingänge, wenn sie nicht von einer Mastersteuerung geleitet werden.

TYPISCHE FÖRDERSYSTEMKOMPONENTEN

Auch wenn *MotionLinx-Ai* nicht auf Förderanwendungen beschränkt ist, sind diese doch am häufigsten. Die folgenden sind die typischen Komponenten, die für eine MotionLinx-Ai-gesteuerte Förderanlage benötigt werden:

- ✓ *MotionLinx-Ai*-Module
- ✓ Motorrollen eine oder zwei pro MotionLinx-Ai
- ✓ Fotosensoren einer oder zwei pro MotionLinx-Ai
- ✓ 24VDC-Stromversorgungen

16 MotionLinx-Ai Benutzerhandbuch

MOTIONLINX

MOTIONLINX-AI-MODULEIGENSCHAFTEN

Jedes individuelle MotionLinx-Ai-Modul hat die folgenden Eigenschaften:

- ✓ Eingebauter EtherCAT Slave Controller-Switch
- ✓ Modulare M8-Buchsen für Fotosensoren
- ✓ Modulare M8-Stecker für Motorrollen
- ✓ 24VDC-Stromanschluss mit separaten Stromversorgungen für Logik und Motoren
- ✓ Kontextsensitive mehrfarbige LED-Anzeigen
- ✓ Thermischer und Überstromschutz für Senergy-Ai-Motor
- ✓ Automatische PNP/NPN-Erkennung für Fotosensor
- ✓ Programmierbare Option f
 ür Push-Pull-Sensor
- ✓ Proportionale/Integrale (PI) Motordrehzahlregelung
- ✓ Drei Motorbremsmethoden zur Auswahl
- ✓ Einstellbare Beschleunigungs- und Abbremszeit
- ✓ IP54-konform

Die ersten Abschnitte dieses Handbuchs beinhalten eine detaillierte Beschreibung der Hardware- und Anschlussanforderungen für *MotionLinx-Ai*-Module sowie der Software-Konfigurationsverfahren für einfache lineare Förderanlagen.

Die letzten Abschnitte des Handbuchs beschreiben die Konnektivität und die Daten, die einer TwinCAT-basierten Mastersteuerung zur Verfügung gestellt werden.

ÜBERBLICK ÜBER DIE MOTIONLINX-AI-MODULHARDWARE

MotionLinx-Ai-Module sind so aufgebaut, dass sie nah am zu steuernden Motor in die Maschinenanlage eingebaut und integriert werden können. Modulabmessungen und Angaben zur Montage finden Sie unter Anhang A - Modulspezifikationen Seite 45.

Das *MotionLinx-Ai*-Modul ist eine Steuerung für bis zu 2 Senergy-Ai-Motoren. Jedes *MotionLinx-Ai* bietet sowohl Anschlusspunkte für 2 Senergy-Ai-Motoreinheiten (typischerweise eine Motorrolle oder ein Pulse Gear Drive) als auch Anschlusspunkte für einen Sensor und/oder digitalen I/O, und Anschlusspunkte für das EtherCAT-Netzwerk.

ABBILDUNG 2 – MOTIONLINX-AI-MODULHARDWARE-AUSSTATTUNG

Nr.	Beschreibung
1	24VDC-Leistungsanschlüsse mit separaten Anschlüssen für Logik und Motoren
2&3	"Motor Links"-LED & "Motor Rechts"-LED – Motorstatus-Anzeigen
4 & 5	Linke Sensor- & Rechte Sensorstatus-LED-Anzeigen
6	Modul-EtherCAT-Status-LED-Anzeige
7	Modulstatus-LED-Anzeige
8&9	Motor Links und Motor Rechts - 4-poliger M8-Stecker für Motorrollenanschluss
10 & 11	Sensor Links und Sensor Rechts – M8-Buchse für Sensoranschluss
12	Abnehmbare IP54 Abdeckung für Stromanschlussfach
13 & 14	Link IN und Link OUT - RJ-45 Ethernet-Netzwerkverbindung zwischen Modulen
15	Abnehmbare IP54 Abdeckung für RJ-45 Schnittstellenfach - Links und Rechts
16*	IP54-Dichtungen für Ethernet- und Stromversorgungskabel

* kennzeichnet Teile, die bei Lieferung nicht am Modul angebracht, aber im Lieferumfang enthalten sind.

18

MotionLinx-Ai Benutzerhandbuch

Die Bezeichnungen "links" und "rechts" für die Modulanschlüsse basieren auf der dargestellten Ansicht des Moduls.

HARDWAREVERBINDUNGEN

MOTORANSCHLÜSSE LINKS UND RECHTS

Beide Anschlüsse verwenden einen 4-poligen M8-Stecker. Jeder Stecker ist mechanisch kodiert, so dass die korrekte Ausrichtung beim Einstecken sichergestellt ist.

ABBILDUNG 3- M8-STECKER UND SENERGY-AI-BUCHSE

SENSORANSCHLÜSSE LINKS UND RECHTS

Jeder Sensoranschluss ist eine Standard-M8-Buchse mit folgender Pinbelegung:

ABBILDUNG 5- MOTIONLINX-AI-BUCHSE UND PASSENDER SENSORSTECKER

ABBILDUNG 4- MOTIONLINX-AI SENSORANSCHLUSS-DIAGRAMM

Die Signale werden in der folgenden Tabelle beschrieben:

Pin	Signal	Beschreibung		
1	24V DC	24V DC-Versorgung des Moduls		
2	Aux I/O	I/O-Signal - Digitale Eingangssignalverbindung		
3	GND	DC-Versorgungsmasse des Moduls		
4	Sensor-Signal	Logischer Eingang für Zustandsausgang des Sensors – Automatische Erkennung von NPN oder PNP		

Weitere Informationen zur Verbindung und Verdrahtung von Geräten für den Zugang zu Aux I/O Pin 2-Signalen finden Sie im Anhang B - IOX-2 Breakout Modul auf Seite 49.

ETHERNET IN (LINKS) UND ETHERNET OUT (RECHTS) PORTS

Beide Anschlüsse sind Standard-RJ-45-Buchsen die mit der Standard-Pinbelegung der Ethernet-Verbindung übereinstimmen. Um der IP54-Klassifizierung zu entsprechen, müssen Ethernetkabel mit Schutzhüllen versehen sein. Abbildung 6 zeigt die verwendeten Ethernetkabel mit Hüllen zum Schutz der RJ-45-Stecker an den Ethernetkabeln. Im Lieferumfang jedes Moduls sind 3 Hüllen enthalten.

ABBILDUNG 6 - MOTIONLINX-AI MIT ETHERNETKABELN LINKS & RECHTS (OHNE ABDECKUNGEN)

ABBILDUNG 7 - ANGESCHLOSSENE ETHERNETKABEL MIT ABDECKUNGEN

Hardwareverbindungen 21

Um die IP54-Schutzhülle richtig am RJ-45-Stecker anzubringen, wird ein spezielles Werkzeug benötigt. Abbildung 8 zeigt ein Phoenix Contact 2891547 FL IP 54 Montagewerkzeug.

Dieses Werkzeug ist nicht im Lieferumfang enthalten!

MotionLinx-Ai Benutzerhandbuch

ABBILDUNG 8 - PHOENIX CONTACT ETHERNET-SWITCH 2891547 FL IP 54 MONTAGEWERKZEUG

ABBILDUNG 10 - SCHUTZHÜLLE AUF DEM WERKZEUG

ABBILDUNG 12 - DAS RJ-45-ENDE WIRD IN DIE HÜLLE GESCHOBEN

ABBILDUNG 9 - WERKZEUG IN RICHTIG EINGESTELLTER STOPP-POSITION

ABBILDUNG 11 - HÜLLE WIRD MIT HILFE DES WERKZEUGS GEDEHNT

ABBILDUNG 13 - HÜLLE WIRD VON DEN ZAPFEN DES WERKZEUGS ENTFERNT

Es wird empfohlen, dass alle Ethernetkabel zur Verbindung zwischen Modulen <u>abgeschirmt</u> werden. Die Verwendung nicht abgeschirmter Kabel kann zu Datenverlust und unerwarteten Ergebnissen führen. Oben sind Ethernetkabel mit abdichtenden Hüllen dargestellt, wie sie benötigt werden, um der Schutzklasse IP54 zu entsprechen.

STROMANSCHLÜSSE

IP54-INSTALLATION

Teil Nr. 17 wie in Abbildung 2 dargestellt ist bei Anlieferung gegebenenfalls nicht mit dem Modul verbunden, sondern separat im Karton des Moduls enthalten. Diese Teile werden verwendet, um eine IP54-konforme Installation der Leistungs- und Ethernetverdrahtung sicherzustellen.

Die Leistungskabel werden durch die Schutzhülle (Nr. 16) geführt. Die Kabelklemmen sind Standard- \mathbf{a} Federklemmen. 16 Wenn die Verdrahtung abgeschlossen ist, wird das Leistungsverdrahtungsfach mit einer Abdeckung (Nr. 18) fest verschlossen.

LOGIK- UND MOTORROLLEN-STROMVERSORGUNG

Das MotionLinx Ai-Modul verfügt über separate Stromanschlüsse für Modullogik- und Motorspeisung, so dass diese durch separate Stromversorgungseinheiten bereitgestellt werden können. Beispielsweise kann die Motorstromversorgung durch ein Not-Halt-System ausgeschaltet werden, so dass alle Motoren ohne Strom sind. Wenn die Motorstromversorgung separat abgeschaltet wird, kann die Logikstromversorgung eingeschaltet bleiben, so dass die Modulkommunikation weiterhin aktiv ist und Statusmitteilungen an Überwachungssysteme senden kann. Abbildung 15 zeigt ein Diagramm für separate Logik- und Motorrollen-Stromversorgung, während das Diagramm in Abbildung 14 die einheitliche Stromversorgung von Logik und Motorrollen darstellt. Beachten Sie, dass die Versorgung der Motorrollen-Klemme gleichzeitig auch die Logik mit Strom versorgt.

MotionLinx-Ai Benutzerhandbuch

ABBILDUNG 14 - ANSCHLUSS EINER EINHEITLICHEN STROMVERSORGUNG FÜR MOTORROLLE UND LOGIK

ABBILDUNG 15 - TYPISCHER ANSCHLUSS SEPARATER STROMVERSORGUNGEN FÜR MOTORROLLE UND LOGIK

ERDUNG DER STROMVERSORGUNG

Egal ob Logik und Motorrollen eine gemeinsame oder separate Stromversorgungen haben, die DC-Versorgungsmasseanschlüsse ("-") müssen verbunden werden. Eine der Stromversorgungen muss über einen geerdeten DC-Anschluss verfügen. Die direkte Erdung von mehr als einem Stromversorgungs-DC-Anschluss ist zu vermeiden, da dies zu unbeabsichtigten Erdungsschleifen führen kann. Abbildung 16 und Abbildung 17 zeigen einheitliche bzw. separate Stromversorgungsanschlüsse sowie deren DC-Versorgungsmasseund Erdungsanschlüsse.

ABBILDUNG 16 - EINHEITLICHER STROMVERSORGUNGSANSCHLUSS MIT ZUSAMMENGEFÜHRTEN DC-VERSORGUNGSMASSE- UND FRDUNGSVERBINDUNGEN

ABBILDUNG 17 – DOPPELTER STROMVERSORGUNGSANSCHLUSS MIT ZUSAMMENGEFÜHRTEN DC-VERSORGUNGSMASSE- UND ERDUNGSVERBINDUNGEN

Weitere Informationen zur Stromversorgung finden Sie im Anhang C - Belastung der Stromversorgung auf Seite 51.

26

MotionLinx-Ai Benutzerhandbuch

MOTIONLINX

Dieses Dokument setzt voraus, dass der Benutzer die Leistungsanforderungen der Motorrollen für die entsprechende Anwendung kennt und dass der Benutzer und/oder der Monteur die 24VDC-Stromversorgungen sowie die Verdrahtung basierend auf den geltenden Richtlinien und Normen richtig dimensioniert hat. Desweiteren wird vorausgesetzt, dass die Geräte bei der Montage ordnungsgemäß geerdet werden. DC-Versorgungsmasse oder "-" müssen an allen Stromversorgungseinheiten immer geerdet sein. Die unsachgemäße Dimensionierung der Stromversorgung und/oder eine unsachgemäße Erdung können unerwartete Folgen haben.

DEFINITION DER MOTORDREHRICHTUNG

Das *MotionLinx-Ai*-Modul verwendet zwei Definitionen der Motordrehrichtung: Im Uhrzeigersinn (Clock-Wise, CW) und gegen den Uhrzeigersinn (Counter Clock-Wise, CCW). Die Unterscheidung basiert auf der Sicht auf die Motorrolle oder den PGD von der Kabelausgangsseite des Geräts her, wie in Abbildung 18 dargestellt.

ABBILDUNG 18 - MOTORDREHRICHTUNGSKONVENTION

Die Standardrichtung für einen Ai-Motor, der an ein MotionLinx-Ai angeschlossen ist, ist im Uhrzeigersinn.

STATUSANZEIGEN

Die Anzeige des *MotionLinx-Ai*-Modulstatus erfolgt durch mehrere LEDs. Alle LEDs, mit Ausnahme der Ethernet-Link- und der Aktivitäts-LEDs, sind mehrfarbig und kontextsensitiv. In der folgenden Tabelle sind die verschiedenen Bedeutungen aller *MotionLinx-Ai*-LEDs erklärt. Die Nummern beziehen sich auf die Positionen am Modul, siehe Abbildung 2 auf Seite 17. Die folgende Auflistung beschreibt die verschiedenen LED-Zustände:

Langsames Blinken	1 Hz	500 ms an / 500 ms aus	
Schnelles Blinken	2,5 Hz	200 ms an / 200 ms aus	
Langsames Aufleuchten	2 Hz	250 ms an / 250 ms aus	
Schnelles Aufleuchten	10 Hz	50 ms an / 50 ms aus	
Einfaches Aufleuchten	-	200 ms an / 1000 ms aus	

KOMMUNIKATION

Anzeige	Position	LED-Zustand	Beschreibung
Ethernet IN (links) Link &		AUS	Keine Verbindung aufgebaut
Ethernet OUT (rechts)		Leuchtet Grün	Verbindung aufgebaut
Link		Grünes Blinken	Bei Datenübertragungsaktivität

NETZWERK UND MODULFUNKTION

Die Modulstatus-LED ist zweifarbig Grün und Rot. Die grüne Farbe zeigt den EtherCAT-Netzwerkzustand an und die rote Farbe zeigt den Fehlerzustand des Moduls an. Jede Farbe hat verschiedene Zustände, um die unterschiedlichen Konditionen wie hier dargestellt anzuzeigen:

Anzeige	LED	LED-Zustand	Beschreibung
Modulstatus	Grün	AUS Schnelles Blinken Einfaches Aufleuchten AN Schnelles Aufleuchten	EtherCAT ist im INIT-Zustand EtherCAT ist im PRE-OP-Zustand EtherCAT ist im SAFE-OP-Zustand EtherCAT ist im OPERATIONAL-Zustand EtherCAT ist im BOOTSTRAP-Zustand
	Rot	AUS Schnelles Blinken Einfaches Aufleuchten AN Schnelles Aufleuchten	EtherCAT läuft Allgemeiner Konfigurationsfehler Lokaler Fehler Kritischer Kommunikations- oder Anwendungsfehler Boot-Fehler

30

<u>Motoren</u>

Anzeige	Position	LED-Zustand	Beschreibung
	2 & 3	AUS Leuchtet Grün	Motor läuft nicht und keine Fehler festgestelltMotor ist angeschlossen und läuftWenn Motor läuft: Zeigt Strombegrenzung an
Motor Links & Motor Rechts		Leuchtet Rot	 Wenn sich der Motor im Stillstand befindet: Zeigt an, dass der Motor nicht richtig angeschlossen oder heißgelaufen ist Stromvorsorgung ist unter 181/ oder über 201/
		Langsames Blinken Rot	Motor ist überlastet und <i>MotionLinx-Ai</i> begrenzt den Strom, um die Temperatur zu senken
		Langsames Aufleuchten Rot	Motor-Kurzschluss zwischen mindestens zwei der Phasenwicklungen festgestellt

SENSOREN

Anzeige	Position	LED-Zustand	Beschreibung
Sensoren	4 & 5	Leuchtet Gelb	MotionLinx-Ai fährt hoch
		Leuchtet Grün	Sensor-Eingang aktiviert
		Leuchtet Rot	Aux-Eingang aktiviert
		Langsames Blinken Rot	Sensor fehlt

STROM

Anzeige	Position	LED-Zustand	Beschreibung
Strom	7	Leuchtet Blau	Stromversorgung ist angeschlossen und Spannung ist im akzeptablen Bereich
5000		Langsames Blinken Blau	Motorversorgung liegt unter 18V

MOTIONLINX-AI IN TWINCAT INTEGRIEREN

EINLEITUNG

MotionLinx-Ai benötigt für den Betrieb eine EtherCAT-Mastersteuerung. Die EtherCAT-Mastersteuerung beinhaltet alle Programmlogik- und Konfigurationsdaten, um jedes einzelne MotionLinx-Ai-Modul anzuleiten, seine(n) angeschlossenen Motor(en) zu betreiben und digitale Eingangsdaten von angeschlossenen Sensoren zu lesen. Diese Anleitung verwendet für alle gezeigten Beispiele die TwinCAT IDE von Beckhoff Automation. Jede kompatible EtherCAT integrierte Entwicklungsumgebungs-Software (Integrated Development Environment, IDE) sollte jedoch den gleichen grundlegenden Schritten zur Modulidentifikation und -konfiguration folgen.

> Diese Anleitung setzt voraus, dass Sie über Grundkenntnisse von EtherCAT-Systemen und der TwinCAT IDE Software verfügen. Weitere Informationen finden Sie in der TwinCAT-Dokumentation von Beckhoff.

ESI-DATEIEN

Jede EtherCAT IDE Software erfordert die Installation einer "EtherCAT Slave Information" (ESI)-Datei für MotionLinx-Ai, damit die richtigen Konfigurationsdaten vorhanden sind. Die neueste MotionLinx-Ai ESI-Datei ist im Download-Bereich von pulseroller.com verfügbar. Wenn Sie die Datei von der Wenseite heruntergeladen haben, müssen Sie diese im richtigen Ordner der TwinCAT-Installation abspeichern. In unserem Beispiel wurde TwinCAT im Standardverzeichnis installiert:

C:\TwinCAT\3.1\Config\IO\EtherCAT

MOTIONLINX-GERÄTE ZU EINER PROJEKTLÖSUNG HINZUFÜGEN

Wenn Sie die ESI-Datei in Ihrer TwinCAT IDE installiert und eine Projektlösung erstellt haben, ist der nächste Schritt, für jedes einzelne MotionLinx-Ai-Gerät das gesteuert werden soll, eine Instanz der MotionLinx-Ai ESI hinzuzufügen. Wir nennen die Lösung in unserem Beispiel "Test project".

32

MotionLinx-Ai Benutzerhandbuch

MOTIONLINX

Wählen Sie im "Insert EtherCAT Device"-Fenster den Gerätetyp, den Sie hinzufügen möchten und geben Sie dann den Namen ein, den Sie für das Gerät vorgesehen haben. In diesem Beispiel haben wir als Gerätenamen "MotionLinx1" eingegeben.

Wenn Sie die gewünschte Menge individueller *MotionLinx-Ai*-Module eingefügt haben, können Sie Ihren Projektbaum erweitern, um die einzelnen Geräte zu sehen. In unserem Beispiel haben wir 5 *MotionLinx-Ai*-Module eingefügt.

ON-LINE-METHODE

Sie können Ihren TwinCAT-PC auch an ein physikalisches Netzwerk oder an Geräte anschließen und das physikalische Netzwerk nach Geräten durchsuchen, die dann automatisch Ihrer Projektlösung hinzugefügt werden, um mit der Netzwerktopologie verbunden zu werden. Weitere Informationen zum Durchsuchen Ihres Netzwerks nach Geräten finden Sie in Ihrer TwinCAT-Dokumentation.

MOTIONLINX-AI-DATENOBJEKTE

Der Datenaustausch zwischen weiter entfernten MotionLinx-Ai-Geräten und der PC-basierten TwinCAT-Steuerung erfolgt mittels CanOpen über EtherCAT (CoE). Dieses Protokoll ermöglicht einen zyklischen Datenaustausch zwischen einer "Master"-Steuerung (PC-basierte TwinCAT-Steuerung) und mehreren "Slave"-Geräten (MotionLinx-Ai-Module). Die von MotionLinx-Ai unterstützten Datenobjekttypen sind "CoE Process Data Objects" (PDOs) und "Service Data Objects" (SDOs). PDOs sind unterteilt in "Transmit"- und "Receive"-Typen. MotionLinx-Ai bietet 3 "Receive"-PDOs, für die die Mastersteuerung Daten an ein vorgegebenes MotionLinx-Ai-Slave-Gerät überträgt. MotionLinx-Ai bietet 2 "Transmit"-PDOs, für die das Slave-Gerät Daten an die Mastersteuerung sendet.

> Weitere Informationen zur CanOpen-Netzwerkprotokoll-Definition finden Sie in der CoE-Dokumentation.

Für jedes MotionLinx-Ai-Gerät in Ihrem Projekt können Sie den Baum in TwinCAT expandieren, um jedes dieser PDOs zu sehen.

Revice 1 (EtherCAT)

FutureUse D. WcState 🛄 InfoData 🕸 MotionLinx_2 (MotionLinx-Ai PLCmode) MotionLinx_3 (MotionLinx-Ai PLCmode)

TRANSMIT-PDOS

Das *MotionLinx-Ai*-Modul bietet zwei Transmit-PDOs. Dies sind die Daten, die von dem *MotionLinx-Ai*-Modul kommen, das der Mastersteuerung als Input zur Verfügung steht.

TRANSMIT PDO0 - OBJECT 0x1A00

Diese Tabelle zeigt die Daten, die von einem MotionLinx-Ai mit Transmit PDO0 gesendet werden.

SubIndex	Index	Datentyp	Datenbeschreibung
Subindex 1 Alle Sensoren	Index 0x3000 Subindex 0	INT	Wert, bitweise - schreibgeschütztBit 00 = Linker Sensor-Port - Aux-EingangBit 01 = ReserviertBit 02 = Rechter Sensor-Port - Aux-EingangBit 03 = ReserviertBit 04 = Linker Sensor-Port - SensoreingangBit 05 = ReserviertBit 06 = Linker Sensor-Port - SensoreingangBit 07 bis Bit 14 = ReserviertBit 15 = 2 Sekunden an / 2 Sekunden aus HeartbeatWeitere Informationen zum Anschließen an den Aux-Eingangfinden Sie im Anhang B - IOX-2 Breakout Modul
SubIndex 2 Servo-Zustand Linker Motor	Index 0x3001 SubIndex 0		Bit 0: Servokommando-Status 1 = Letzter Servo-Startbefehl ausgeführt 0 = Servokommando in Bearbeitung
SubIndex 3 Servo-Zustand Rechter Motor	index 0x3006 Subindex 0	SINT	Bit 1: Servo-Reset-Status Wiederholt Zustand Servokommando Linker Motor Bit 0 Bit 2: Servokommando-Status Wiederholt Zustand Servokommando Linker Motor Bit 1
SubIndex 4 Servo-Position Linker Motor	Index 0x3002 Subindex 0	INT	 Vorzeichenbehaftete ganze Zahl, die die aktuelle Position des Linken Motors im Verhältnis zu seiner "O"-Position angibt Für Motorrollen ist der Wert in mm Für PGD ist der Wert in Motorimpulsen
SubIndex 5 Servo-Position Linker Motor	Index 0x3002 Subindex 0	INT	 Vorzeichenbehaftete ganze Zahl, die die aktuelle Position des Rechten Motor im Verhältnis zu seiner "O"-Position angibt Für Motorrollen ist der Wert in mm Für PGD ist der Wert in Motorimpulsen

TRANSMIT PDO1 - OBJECT 0x1A01

Diese Tabelle zeigt die Daten, die von einem MotionLinx-Ai mit Transmit PDO1 gesendet werden.

SubIndex	Index	Datentyp	Datenb	eschreibung
SubIndex 1	Subindex 1		Wert, bitweise - siehe Anmerku	ng ①
Linker Motor	Subindex 0	INT	Bit 00 = Motorstatus Bit 01 = Motorstatus Bit 02 = Port in digitalom Modus	Bit 08 = Überhitzt Bit 09 = Überstrom Bit 10 = Kurzschluss
SubIndex 2 Moduldiagnose Rechter Motor	Index 0x3005 Subindex 0	INT	Bit 02 – For in digitalem Modus Bit 03 = Reserviert Bit 04 = Reserviert Bit 05 = Board-Überhitzung Bit 06 = Überspannung Bit 07 = Niederspannung	Bit 10 – Kurzschuss Bit 11 = Motor nicht angeschlossen Bit 12 = Überlastet Bit 13 = Motor blockiert Bit 14 = Hall-Sensor-Fehler Bit 15 = Motor wird nicht verwendet

ANMERKUNG ①

Bits 0 und 1 werden in Kombination verwendet, um 4 mögliche Zustände für den Motorstatus zu bieten. In der folgenden Tabelle werden die Bitwerte für diese Zustände definiert:

Motorstatus Bit 0 und Bit 1					
Bit 1	Bit O	Beschreibung			
0	0	Motor läuft nicht, Standard- oder Servobremsmethode wird angewendet			
0	1	Motor läuft entgegen dem Uhrzeigersinn			
1	0	Motor läuft im Uhrzeigersinn			
1	1	Motor läuft nicht und keine Bremsmethode wird angewendet (frei drehend)			

36

MotionLinx-Ai Benutzerhandbuch

RECEIVE PDOs

Das *MotionLinx-Ai*-Modul verwendet 3 Receive PDOs. Dies sind die Daten, die von der Mastersteuerung erzeugt und vom *MotionLinx-Ai*-Modul empfangen werden.

RECEIVE PDO0 - OBJECT 0x1600

SubIndex	Index	Datentyp	Datenbeschreibung
SubIndex 1 Motorsteuerung Links	Index 0x2000 SubIndex 0	SINT	Bit 0: AN = Startbefehl AUS = Stoppbefehl Bit 1: AUS = Betrieb in konfigurierter Richtung AN = Betrieb entgegen der konfigurierten Richtung
SubIndex 2 Motorsteuerung Rechts	Index 0x200C SubIndex 0	SINT	
SubIndex 3 Motordrehzahl Links	Index 0x2001 SubIndex 0	INT	Ganzzahliger Wert zur Einstellung der Motordrehzahl
SubIndex 4 Motordrehzahl Rechts	Index 0x2002 SubIndex 0	INT	 Für PGD ist der Wert in U/min
SubIndex 5 Bremsmodus Links	Index 0x200F SubIndex 0	SINT	Ganzzahliger Wert zur Einstellung des Motorbremsmodus Siehe
SubIndex 6 Bremsmodus Rechts	Index 0x2010 SubIndex 0	SINT	Anmerkung ④

RECEIVE PDO1 - OBJECT 0x1601

SubIndex	Index	Datentyp	Datenbeschreibung
SubIndex 1 Motorbeschleunigung Links	Index 0x2003 Subindex 0	INT	Ganzzahliger Wert zur Einstellung von Beschleunigung und Verzögerung für jeden Motor • Für Motorrollen ist der Wert in mm • Für PGD ist der Wert in Motorimpulsen
SubIndex 2 Motorverzögerung Links	Index 0x2004 Subindex 0	INT	
SubIndex 3 Motorbeschleunigung Rechts	Index 0x2005 Subindex 0	INT	
SubIndex 4 Motorverzögerung Rechts	Index 0x2006 Subindex 0	INT	

37

RECEIVE PDO2 - OBJECT 0x1602

SubIndex	Index	Datentyp	Datenbeschreibung
Subindex 1 Servosteuerung	index 0x2007 Subindex 0	INT	 Bit 0: Reset-Kommando Linker Motor = Aktuelle Position als "0" festlegen Bit 1: Servo-Startbefehl Linker Motor = Motor aus dem aktuellen Positionswert starten und bis zum im SubIndex "Motor-Servo Links einstellen" eingegebenen Wert laufen lassen Bit 8: Reset-Kommando Rechter Motor = Aktuelle Position als "0" festlegen Bit 9: Servo-Startbefehl Rechter Motor = Motor aus dem aktuellen Positionswert starten und bis zum im SubIndex "Motor-Servo Eachter Motor Motor-Servo Rechts einstellen" eingegebenen Wert laufen lassen Bit 9: Servo-Startbefehl Rechter Motor = Motor aus dem aktuellen Positionswert starten und bis zum im SubIndex "Motor-Servo Rechts einstellen" eingegebenen Wert laufen lassen
SubIndex 2 Motor-Servo Links einstellen	index 0x2008 Subindex 0	INT	 Ganzzahliger Wert mit Vorzeichen als Ziel beim nächsten Servo-Startbefehl Linker Motor Werte für Motorrollen sind in mm Werte für PGD sind in Motorimpulsen Gültige Werte liegen zwischen -32767 und +32767
SubIndex 3 Motor-Servo Rechts einstellen	index 0x2009 Subindex 0	INT	 Ganzzahliger Wert mit Vorzeichen als Ziel beim nächsten Servo-Startbefehl Rechter Motor Werte für Motorrollen sind in mm Werte für PGD sind in Motorimpulsen Gültige Werte liegen zwischen -32767 und +32767

VERWENDUNG VON PDO-DATEN

Wenn alle Geräte zu Ihrem Projekt hinzugefügt worden sind, müssen Sie die gewünschten PDO-Objekte jedes *MotionLinx-Ai*-Geräts mit den Tag-Variablen verbinden, die Sie in Ihrer SPS-Task erstellen. Um Zugang zu den Funktionen jedes *MotionLinx-Ai*-Moduls zu haben und diese zu steuern, schreiben bzw. lesen Sie dann Ihre SPS-Tag-Variablen.

38

MotionLinx-Ai Benutzerhandbuch

MOTIONLINX

SERVICE DATA OBJECTS (SDOS)

SDOs werden für Daten verwendet, die nicht zyklisch sein sollen wie PDOs. Die Verwendung von SDOs kann als "niedrigere Priorität" bezeichnet werden und erfolgt "je nach Bedarf". Für *MotionLinx-Ai* gibt es 3 SDOs:

- Konfiguration
- Daten Linker Motor
- Daten Rechter Motor

KONFIGURATION SDO - INDEX 0X4000

Eine der Funktionen der TwinCAT PC-Software ist, dass Sie ein SDO erstellen können, um es von der Mastersteuerung an jedes Gerät zu senden, basierend auf dem Übergang des CoE-Netzwerks vom Betriebsvorbereitungszustand zum sicheren Betriebszustand. Die MotionLinx-Ai-Module erkennen diesen Übergang und verwenden ihn, um bestimmte spezifische interne Datenregister mit Daten des Konfigurations-SDO einzupflegen. Die Verwendung des Konfigurations-SDO ist rein optional und wenn die Mastersteuerung einige dieser Objekte oder das ganze Objekt nicht benutzt, wird das MotionLinx-Ai-Modul die voreingestellten Werte für diese Elemente nutzen. Die Mastersteuerung kann zwar jederzeit Daten an das Konfigurations-SDO schreiben, das MotionLinx-Ai-Modul wird diesen Wert aber erst dann empfangen und aktualisieren, wenn ein Netzwerkzustandsübergang von Betriebsvorbereitung zu sicherem Betriebszustand stattfindet.

Für eine Beispielanwendung des Konfigurations-SDO nehmen wir an, dass jedes Modul außer einem in Ihrem Netzwerk die Standardwerte für den Motortyp verwendet. Die Erstellung eines Konfigurations-SDO für dieses eine Modul, um diesen anderen Motortyp einzustellen, wird immer sicherstellen, dass dies bei jedem Netzwerkzustandsübergang von Betriebsvorbereitung zu sicherem Betriebszustand erfolgt.

SubIndex	Datentyp	Datenbeschreibung
Subindex 1 Sensorpolarität	INT	Wert, bitweiseBit 00 = Linker Sensor-Port - Aux-EingangBit 01 = ReserviertBit 02 = Rechter Sensor-Port - Aux-EingangBit 03 = ReserviertBit 04 = Linker Sensor-Port - SensoreingangBit 05 = ReserviertBit 06 = Linker Sensor-Port - SensoreingangBit 07 bis Bit 15 = ReserviertSiehe Anmerkung (2)
Subindex 2 Push-Pull-Sensor	INT	Wert, bitweise Bit 00 = Linke Sensorport-Eingänge Bit 01 = Rechte Sensorport-Eingänge Bit 02 bis Bit 15 = Reserviert Bit = AN: Beide Eingänge am Port sind auf "Push-Pull" eingestellt Bit = AUS: Beide Eingänge am Port sind auf NPN/PNP-Autoerkennung eingestellt
SubIndex 3 Motortyp Links	INT	Ganzzahliger Wert zur Einstellung des Motortyps Siehe Anmerkung ③

In der folgenden Tabelle wird jedes Element des Konfigurations-SDO definiert.

SubIndex	Datentyp	Datenbeschreibung
Subindex 4 Motortyp Rechts	INT	
Subindex 5 Bremsmodus Links	INT	Ganzzahliger Wert zur Einstellung des Motorbremsmodus Siehe Anmerkung 4
SubIndex 6 Bremsmodus Rechts	INT	
Subindex 7 Motordrehzahl Links	INT	Ganzzahliger Wert zur Einstellung der Motordrehzahl
SubIndex 8 Motordrehzahl Rechts	INT	 Für PGD ist der Wert in U/min

ANMERKUNG (2)

Wenn in diesem SDO-Register ein vorgegebenes Bit auf 1 eingestellt ist, ist der logische Zustand des entsprechenden Bits im "Alle Sensoren"-Objekt des PDO0 invertiert. Dies kehrt auch den LED-Zustand um, der am Modul angezeigt wird.

Für den Programmierer der Mastersteuerung ist dies von Nutzen. Beispielsweise könnte die Mastersteuerung einen wiederverwendbaren Code oder Routinen verwenden, die erwarten, dass das elektrische Signal eines Fotosensors AN ist, wenn er "blockiert" ist. Nehmen wir einmal an, dass Sie an ein bestimmtes MotionLinx-Ai-Modul einen Fotosensor anschließen müssen, dessen elektrisches Signal AUS ist, wenn er "blockiert" ist. Anstatt die Programmlogik überall dort zu modifizieren, wo dieser Eingang verwendet wird, können Sie einfach mit diesem SDO-Register dessen logische Polarität ändern. Die Einstellung der logischen Polarität wirkt sich auch auf den LED-Zustand aus.

Wenn zum Beispiel der Linke Sensoreingang standardmäßig elektrisch betätigt wird, leuchtet die entsprechende LED grün und Bit 4 des "Alle Sensoren"-PDO-Registers ist 1. Wenn Sie Bit 4 im SDO-Sensorpolarität-Register einstellen, wenn der Linke Sensoreingang elektrisch betätigt wird, ist Bit 4 des "Alle Sensoren"-PDO 0 und seine entsprechende LED ist aus.

ANMERKUNG (3)

Die Werte für den Motortyp sind die folgenden:

Wert	Motortyp	Beschreibung
0	ECO Plus	Weitere Informationen zu Motortypen finden Sie in Anhang C - Belastung der Stromversorgung auf Seite 51
1	ECO	
2	Boost	
3	Boost 8	

40

ANMERKUNG (4)

In der folgenden Tabelle werden die verfügbaren Motorrollen-Bremsmethoden definiert:

Wert	Methode	Beschreibung
0	Normal	Standard dynamisches Bremsen - Motorrollen-Stromkreis in <i>MotionLinx-Ai</i> intern verbunden während Motorstoppsequenz, um rückwärtsgerichtete Energie zu liefern, die den Rotor zum Halten bringt. Wenn <i>MotionLinx-Ai</i> festgestellt hat, dass der Motor angehalten hat, wird der Wicklungsstrom aller Motorwicklungen abgeschaltet. Diese Bremsmethode entspricht dem Industriestandard und ist die Standardeinstellung ab Werk für alle <i>MotionLinx-Ai</i> -Module.
1	Frei	Motorrollen-Stromkreis in <i>MotionLinx-Ai</i> ist intern unterbrochen, damit der Rotor sich "frei drehen" kann, bis seine mechanische Last ihn zum Halten bringt
2	Servobremse	Wenn ein Motor angehalten werden soll, verwendet das <i>MotionLinx-Ai</i> den Hall-Effekt-Geber des Motors, um die Position des Rotors zu bestimmen und führt den Motorwicklungen Strom zu, damit die Rotorposition erhalten bleibt.

Bitte beachten Sie, dass bei den Servobremsmethoden die Motorbeschaltung dem Motor Strom zuführt, um ihn in derselben Position zu halten. Je mehr Drehkraft benötigt wird, um die Position des Motorrotors zu erhalten, umso mehr Strom wird zugeführt. Langanhaltendeds Bremsen bei höheren Drehmomentwerten kann Motorüberstrom und/oder -überhitzung zur Folge haben.

MOTORDATEN LINKS & MOTORDATEN RECHTS SDO - INDEX 0x4100 / 0x4101

Die Motordaten-SDOs stellen die Ai-Motordaten für die Mastersteuerung bereit. Jeder Ai-Motor (Motorrolle oder PGD) hat einen internen Speicher, der in den letzten Produktionsschritten beschrieben wird. Diese Daten beinhalten die Seriennummer, das Herstellungsdatum, Rollenabmessungen etc. In der folgenden Tabelle sind alle in diesen SDOs verfügbaren Elemente aufgeführt. Bitte beachten Sie, dass die Daten für den Linken Motor bei Index 0x4100 zu finden sind, und die Daten für den Rechten Motor bei Index 0x4101.

Sub Index	Position	Datentyp	Datenbeschreibung		
1	Produktions-ID	INT	Laufende Nummer für die am Herstellungstag gefertigten Artikel		
2	Kundenkennung	SINT	Kundennummer		
3	Rollentyp	SINT	 Der ASCII-Wert gibt den Rollentyp an: A = Standard T = Konisch W = Als strahlwassergeschützt eingestuft (IP66) Z = Gefrierfest (-30°C) 		
4	Motortyp	SINT	Wert, der den Motortyp angibt • 0 = MDR • 1 = PGD		

Sub Index	Position	Datentyp	Datenbeschreibung			
5	Rohrdurchmesser	SINT	Rollendurchmesser in Millimeter (nicht zutreffend für PGD)			
6	Geschwindigkeits-Code / Getriebe	SINT	 Wert, der die Getriebeuntersetzung angibt Dieser Wert ist der Geschwindigkeits-Code, wenn der Typ eine Motorrolle ist Dieser Wert gibt die Getriebeübersetzung an, wenn es sich um einen PGD handelt 			
7	Interlock	SINT	 Der ASCII-Wert gibt die Verbindung von Rolle zu Rolle an: A = Direkt B = Keilscheibe G = Genutet H = Micro-Keilscheibe (Micro-V) 			
8	Herstellungsmonat	SINT	Zahlenwert des Herstellungsmonats (1 bis 12)			
9	Herstellungsjahr	SINT	Zahlenwert der letzten beiden Stellen des Herstellungsjahres			
10	Achse	SINT	Intern kodierter Zahlenwert			
11	Rohrmaterial	SINT	Der ASCII-Wert gibt die Verbindung von Rolle zu Rolle an: • A = Stahl • B = 3 mm Schwarzer Gummi • J = Edelstahl • Q = 2 mm PVC-Hülle • W = 3 mm Urethan • Z = Zink			
12	Motorlänge	INT	Motorrollenlänge in mm			
13	Herstellungstag	SINT	Tag des Herstellungsmonats (1 bis 31)			
14	Montageland	SINT	Numerischer Wert, der den Herstellungsort angibt • 0 = Europa • 1 = Japan • 2 = USA			
15	Zeit	DINT	Die abgelaufene Zeit in Minuten, in der der Motor gelaufen ist			
16	Zeit Strombegrenzung	DINT	Die Zeit in Minuten, die der Motor in Strombegrenzung gelaufen ist			
17	Zeit Überhitzung	DINT	Die Zeit in Minuten, die der Motor mit Überhitzung gelaufen ist			
18	An/Aus-Zyklen	DINT	Die Anzahl der Male, die der Motor einen An- und Aus-Zyklus durchlaufen hat			
19	Anzahl Überspannung	DINT	Die Anzahl der Male, bei denen die Modulspannung 30V überschritten hat			
20	Anzahl Unterspannung	DINT	Die Anzahl der Male, bei denen die Modulspannung 18V unterschritten hat			

MOTOR-/MODULTEMPERATUR SDO - INDEX 0x3007 UND 0x3008

Diese SDOs enthalten Temperaturdaten für die Temperatursensoren der Motorsteuerung und die internen Motorsensoren des Linken und Rechten Motors. In der folgenden Tabelle ist jedes der in diesen SDOs verfügbaren Elemente aufgeführt. Bitte beachten Sie, dass die Daten für den Linken Motor bei Index 0x3007 zu finden sind, und die Daten für den Rechten Motor bei Index 0x3008.

Sub Index	Position	Datentyp	Datenbeschreibung
0	Temperatur	INT	Zahlenwert der Temperatur in °C: Höherwertiges Byte = Motortemperatur Niederwertiges Byte = Motorsteuerungstemperatur

MAXIMALE MOTORGESCHWINDIGKEIT SDO - INDEX 0x3011 UND 0x3012

Diese SDOs enthalten die maximale erlaubte Drehzahl für die erkannten Linken und Rechten Motoren. In der folgenden Tabelle ist jedes der in diesen SDOs verfügbaren Elemente aufgeführt. Bitte beachten Sie, dass die Daten für den Linken Motor bei Index 0x3011 zu finden sind, und die Daten für den Rechten Motor bei Index 0x3012.

Sub Index	Position	Datentyp	Datenbeschreibung
0	Maximale INT Zahlenwert der maximalen Drehzahl: Geschwindigkeit INT Für Motorrollen ist der Wert in mm/s Für PGD ist der Wert in U/min x 10 Für PGD ist der Wert in U/min x 10		Zahlenwert der maximalen Drehzahl: • Für Motorrollen ist der Wert in mm/s • Für PGD ist der Wert in U/min x 10

MOTIONLINX-AI "FILE OVER ETHERCAT"

MotionLinx-Ai unterstützt das FoE ("File-over-EtherCAT")-Protokoll zur Dateiübertragungüber das EtherCAT-Netzwerk. Dieses Protokoll wird für zwei Zwecke verwendet:

Um die Firmware des MotionLinx-Ai zu aktualisieren

Um die ESI-Datei des EtherCAT Slave Controller-Switch hochzuladen/zu aktualisieren.

Bitte beachten Sie, dass die Firmware-Version mit der Firmware-Version, die in der ESI-Datei angegeben ist übereinstimmen muss, um den korrekten Betrieb des MotionLinx-Ai-Moduls zu gewährleisten.

MOTIONLINX-AI FIRMWARE-AKTUALISIERUNG

Aktualisierungen der Modul-Firmware können nur mit der TwinCAT-Software installiert werden. Die TwinCAT-Software erlaubt es Ihnen, eines, mehrere oder alle Module Ihres Netzwerks zu aktualisieren.

Firmware-Upgrade-Dateien können, wenn verfügbar, von Pulseroller.com heruntergeladen werden.

Wenn Sie die Firmware-Datei heruntergeladen haben (in jedem Fall eine Datei mit .bin-Endung), speichern Sie diese in einem leicht zugänglichen Ordner auf Ihrem PC. Wählen Sie in TwinCAT die Geräte aus, die Sie aktualisieren möchten, und führen Sie das "Firmware Upgrade" durch wie in Abbildung 19 dargestellt.

ABBILDUNG 19 - FIRMWARE UPGRADE BEISPIEL

Wenn Sie "Firmware Upgrade" auswählen, öffnet sich ein Browserfenster. Navigieren Sie zu dem Ort, an dem Sie die heruntergeladene Datei abgelegt haben, und wählen Sie diese aus. Bitte beachten Sie, dass Sie ein Passwort (49) eingeben müssen, um die Aktualisierung fertigzustellen, wie in Abbildung 20 dargestellt.

44

No	Addr	Name	State	CRC	
MLAi 1	1001	MotionLinx (MotionLinx-Ai PLCmo	OP	0, 0	
mm 2	1002	MotionLinx_2 (MotionLinx-Ai PLC	OP	0, 0	
MLA: 3	1003	MotionLinx_3 (MotionLinx-Ai PLC	OP	0, 0	
MLAI4	1004	MotionLinx_4 (MotionLinx-Ai PLC	OP	0.0	
m 5	1005	MotionLinx_5 (MotionLinx-Ai PLC	OP	0	
Actual Sta Init Clear	te: Pre-Op r CRC	OP Cour Safe-Op Op Senc Clear Frames Lost Tx/F	tring: ex: ength: assword (hex): (MotionLinx_1_1 4D 6F 74 69 6F 6E 4C 69 6E 78 5F 31 5F 31 14 00000049	OK Cancel

ABBILDUNG 20 - FIRMWARE UPGRADE BEISPIEL MIT PASSWORT

MOTIONLINX-AI ESI-DATEI UPGRADE

Ähnlich wie bei der Aktualisierung der Modulfirmware folgt auch das ESI-Upgrade dem gleichen Verfahren, außer dass Sie "EEPROM Update" aus dem Menü auswählen, wie in Abbildung 21 dargestellt.

ABBILDUNG 21 - ESI-DATEI UPGRADE BEISPIEL

ANHANG A - MODULSPEZIFIKATIONEN

ABMESSUNGEN

Abmessungen in mm

46

MotionLinx-Ai Benutzerhandbuch

MOTIONLINX

EINBAUMAßE

UMGEBUNG UND ELEKTRIK

Versorgungsspannung	24,0V +/- 10%		
Stromverbrauch im Standby-Betrieb	weniger als 120mA		
Motoranlaufstrom	8A oder niedriger		
Motornennstrom "Torque-On-Demand"	bis zu 8A		
Mindestbetriebsspannung	21V		
Maximale Betriebsspannung	30V		
Lagerungstemperatur	-40C bis 120C (-40F bis 248F)		
Umgebungsbetriebstemperatur	0C bis 50C (32F bis 122F)		
Luftfeuchtigkeit	5% bis 95% (nicht kondensierend)		
Vibration	0,152 mm (0,006 in.) Verschiebung, 1G Höchstwert		
Mechanischer Schock	20G Höchstwert für eine Dauer von 10ms (1,0 ms)		
Gehäuse IP-Schutzart	IP54		
Maximaler Spitzenstrom	21,5A*		
Maximaler Motoranlaufstrom	12A		

*Dies ist der Maximalstrom, den die Überstrom-Schutzbeschaltung der Hardware zulässt. Die Onboard-Firmware begrenzt die Stromstärke basierend auf der Anzahl und der Typen von angeschlossenen Motoren.

SENSOR-PORT

Eingänge	 Automatische PNP/NPN-Erkennung (Standard) 4 pro Modul - 2 Eingänge pro Sensor-Port Programmierbar "Push-Pull" auswählbar
Minimaler ON-Strom	1,5mA
Maximaler OFF-Strom	0,4mA

Sensorport-Eingänge verfügen über eine Auto-Erkennung der angeschlossenen Schaltungsart von PNP oder NPN. Bitte beachten Sie, dass sowohl Stromquellen als auch -senken den Eingang aktivieren.

Sowohl der Linke als auch der Rechte Sensor-Port sind durch eine einfache rücksetzbare 200mA-Sicherung geschützt. Der Gesamtstrom von Linkem und Rechtem Port darf 200mA nicht überschreiten.

Sowohl der Linke als auch der Rechte Sensor-Port verwenden Lasterkennungsschaltungen zwischen +24V (Pin 1) und Masse (Pin 3). Diese Schaltung gibt den vom Sensor erkannten Status an den Prozessor weiter. Ein Kurzschluss zwischen Pin 1 und Pin 3 kann die Lasterkennungsschaltung beschädigen und diese Funktion unbrauchbar machen.

48

MOTIONLINX

MOTOR-PORTS

Unterstützte Motortypen	Senergy-Ai			
PWM-Frequenz*	25 kHz +/- 0,1%			
Maximaler Anlaufstrom	8A			
Maximaler Nennstrom "Torque-On-Demand"	bis zu 8A			
Motorschutz**	 Wicklung-zu-Wicklung Kurzschlusserkennung Wicklung-zu-VCC Kurzschlusserkennung Überhitzungserkennung Überspannungserkennung Niederspannungserkennung Blockierungserkennung 			

*Die PWM-Frequenz ist abhängig von der Firmware-Version.

**Während des normalen Betriebs als Motorrollen-Port ist die interne Schutzbeschaltung nicht in der Lage, einen Kurzschluss zwischen einem BLDC-Wicklungsausgang und Masse zu erkennen. Ein solcher Kurzschluss verursacht Beschädigungen an den High-Side-Brückentransistoren.

ETHERNET-SPEZIFIKATION

- Integrierter 2-Port EtherCAT-Switch Port A und Port B sind auf dem Gehäuse markiert.
- 100Mb Netzwerkgeschwindigkeit
- Gegendrucksteuerungsunterstützung

UNTERSTÜTZTE INDUSTRIAL ETHERNET-PROTOKOLLE

• EtherCAT

ANHANG B - IOX-2 BREAKOUT MODUL

Das IOX-2Breakout-Modul bietet eine praktische "Plug-and-Play"-Methode, um die Sensor- (Eingang 1) und die Aux Input-Signale (Eingang 2) am Sensor-Port des MotionLinx-Ai-Moduls zu separieren. Das IOX-2 verwendet M8-Anschlüsse, so dass Sie sowohl Ihre M8-Sensoren als auch M8-Kabel (oder zusätzliche Sensoren) anschließen können, um auf das Aux Input Pin 2-Signal zugreifen zu können. Das IOX-2 bietet außerdem Zugriff auf die Aux Input Pin 2-Signale über Kabelanschlussklemmen und damit volle Flexibilität.

ABBILDUNG 22 - IOX-2 MODUL (ABMESSUNGEN IN MM)

Die folgenden Abbildungen zeigen die typische Verwendung und Anschlussdetails für *MotionLinx-Ai*-Anwendungen.

ABBILDUNG 23 – 4 M8-SENSOREN VERBUNDEN MIT 2 IOX-MODULEN

50

MotionLinx-Ai Benutzerhandbuch

ABBILDUNG 24 - 2 M8-SENSOREN UND 2 SENSOREN VERBUNDEN MIT KLEMMEN

ABBILDUNG 25 - 2 M8-SENSOREN UND 2 SCHALTKONTAKTE VERBUNDEN MIT KLEMMEN

ABBILDUNG 26 - TYPISCHE ANSCHLUSSPLÄNE

51

ANHANG C - BELASTUNG DER STROMVERSORGUNG

Die Stromlast einer Stromversorgung für eine Gruppe von MotionLinx-Modulen hängt vom gewählten Motortyp ab. Jedem verfügbaren Motortyp wird ein Nennstrom zugeordnet, den der Motor bei Nenndrehmoment und Maximalgeschwindigkeit in Anspruch nimmt. Jedem Motortyp wird außerdem ein zulässiger Stromverbrauch zugeordnet, der für einen Zeitraum bei der Inbetriebnahme des Motors zur Verfügung steht. Diese Stromwerte und Anlaufzeiten werden in der folgenden Tabelle dargestellt

	ECO	ECO Plus	Boost	Boost 8
Stromversorgungslast pro Motor-Port bei Nenndrehmoment und Maximalgeschwindigkeit	2,5 A	2,5 A	3,5 A	3,5 A
Stromversorgungslast pro Motor-Port während der Anlaufzeit des Motors	3,0 A	4,1 A	5,0 A	8,0 A
Dauer der Anlaufzeit des Motors	5,0 s	Kein Zeitlimit	1,5 s	3,0 s

Bitte beachten Sie, dass die aufgeführten Stromwerte pro Motor-Port gelten, wenn also beide Motor-Ports an einem MotionLinx-Modul verwendet werden, ist die Stromlast, die die Stromversorgung für dieses Modul erfährt, doppelt so hoch sein wie der angezeigte Wert.

NOTIZEN:

WWW.PULSEROLLER.COM SALES@PULSEROLLER.COM SUPPORT@PULSEROLLER.COM